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ABSTRACT

Single-molecule force spectroscopy has the potential to provide
unprecedented insights into the mechanical properties of individual
molecules. The unfolding of proteins and nucleic acids, the
dissociation of molecular complexes, and other molecular transi-
tions can be induced through mechanical forces exerted, for
example, by laser optical tweezers or atomic force microscopes and
monitored with subnanometer resolution. Can one obtain the
equilibrium free energy of the molecular system along the pulling
coordinate from such nonequilibrium force measurements? Jarzyn-
ski’s remarkable identity does not immediately solve this problem
because it relates the nonequilibrium work to free energy differ-
ences at different times, not positions. By surmounting this
difficulty, we were able to express the free energy profile in terms
of the integral of the force with respect to extension. Here we
present the theory in a simple way and discuss various practical
aspects in the context of pulling experiments. We illustrate our
rigorous free energy reconstruction procedure by applying it to
force-induced RNA unfolding experiments.

1. Introduction

In single-molecule force spectroscopy, individual mol-
ecules or molecular assemblies are pulled apart by atomic
force microscopes or laser optical tweezers to learn about
their structure, dynamics, interactions, and mechanical
properties.'”!% In such experiments, a spring is attached
to an anchored molecule or molecular assembly, possibly
via molecular linkers (Figure 1). Pulling induces mechan-
ical stress in the molecular system and, eventually, forces
a molecular transition such as the unfolding of a nucleic
acid or protein or the dissociation of a molecular complex.
Analogous computer simulations®!6~1° have been used to
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FIGURE 1. Single-molecule force spectroscopy using (a) atomic
force microscopes and (b) laser optical tweezers. The anchored
sample, indicated by the protein cartoons, is moved at a speed v
relative to the pulling apparatus. The dashed vertical arrows indicate
the controlled distance, z(f) = Z0) + vt, between the sample and
pulling-spring anchors. The fluctuating molecular extension, g(1), is
indicated by solid vertical arrows and corresponds to the bead-to-
bead distance in panel b. The deflections of (a) the cantilever or (b)
the bead from their resting positions (small vertical arrows) indicate
the instantaneous forces, At) = ks[z(t) — g(1)].

provide atomistically detailed pictures of molecular rup-
ture processes.

With spectacular resolutions of piconewton forces and
angstrom molecular extensions, it may at first sight seem
easy to extract useful equilibrium thermodynamic proper-
ties (binding constants, folding free energies, etc.) from
single-molecule force spectroscopy. Unfortunately, in
typical pulling experiments, a time-varying external force
actively perturbs the molecular system. This leads to
nonequilibrium effects and hysteresis. We know from the
second law of thermodynamics that the work performed
during a measurement will equal the free energy only if
the experiment is performed reversibly (i.e., infinitely
slowly). This may suggest that rigorous thermodynamic
measurements at finite pulling speeds are impossible.
However, Jarzynski’s remarkable identity between ther-
modynamic free energy differences and the work along
nonequilibrium trajectories?®?! suggests that one should,
at least in principle, be able to extract thermodynamic
information from repeated nonequilibrium pulling experi-
ments.

In practice, one is immediately faced with the difficulty
that Jarzynski’s identity relates the free energy difference
between two thermodynamic states to the work performed
in converting one state to another by continuously chang-
ing some control or switching parameter. In the context
of pulling experiments, it gives the free energy of the entire
system at two different times. Because the position of the
pulling coordinate fluctuates, this is not the same as the
free energy difference between two positions along the
pulling coordinate.

In this Account, we will describe how to obtain the free
energy along the pulling coordinate and discuss how to
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remove contributions due to molecular linkers and the
pulling apparatus. A simplified version of our procedure
has been used by Liphardt et al.'® to analyze force-
extension curves obtained by unfolding RNA and by
Schulten and collaborators!?® to extract free energy surfaces
for aquaporin conduction from steered molecular dynam-
ics simulations. We begin by putting Jarzynski’s identity
into the context of traditional methods of free energy
calculation.???® A unified path—integral approach to kinet-
ics with fluctuating rates, Kubo—Anderson line-shape
theory,?* and the Feynman—Kac theorem of quantum
mechanics?® will then provide us with the necessary
background for a simple derivation of Jarzynski’s identity
and our results for the free energy surfaces. After discuss-
ing some practical aspects in the context of pulling
experiments, we illustrate our rigorous procedure?® and
some approximations to it by considering the recent RNA-
unfolding experiment of Liphardt et al.!> We conclude by
briefly describing our related work on how kinetic infor-
mation can be extracted from pulling experiments.?’

2. Theory

2.1. Free Energy Perturbation Theory. Perhaps the
simplest physical example of the kind of problems that
motivated Jarzynski’s seminal work is the calculation of
the free energy required to charge an ion in solution. Let
Hy(x) be the Hamiltonian describing a system consisting
of a neutral atom dissolved in water with x being a point
in phase space. Let Hy(x) + AV(x) be the Hamiltonian for
the same system with a partial charge le on the atom.
The (Helmholtz) free energy of such a partially charged
system is

BGA) = —In QM) ey

where 7! = kgT (kg being Boltzmann’s constant and T
being the absolute temperature), and Q(4) is the canonical
partition function,

QW) = [e PV dx 2)

The integral is over all points x in phase space, and for
simplicity, combinatorial prefactors are ignored. Dif-
ferentiating eq 1 with respect to 4 and using eq 2, we have

—[(Hyt+AV)
9G _ fVe 0 dx
oA fe—ﬁ(H0+/1V] dx

where the subscript 1 indicates that the average is for a
system with Hamiltonian H, + AV. Integrating this from 1
=0tol =1, we get

=0 3)

G(1) - G(0) = AG= [, ) d2 4)

This expression dates back at least to the work of Born??
in 1920. It shows how one can obtain the free energy
change from equilibrium averages of the perturbation
when the perturbation is turned on infinitely slowly (and
thus reversibly). Can one obtain the free energy difference

when the perturbation is turned on instantaneously, that
is, infinitely fast, by calculating some equilibrium average
for the initial unperturbed state with Hamiltonian Hy? The
answer is not only “yes” but also the result follows
immediately from the definition of the free energy differ-
ence:?

—B(Hy
me_Q _ ST
Q(O) fe—ﬁHo dx

Thus, the free energy difference can be obtained exactly
by calculating the equilibrium average of the exponential
of the perturbation using trajectories generated from the
initial state. Although this result is formally exact, it is not
very useful in practice when the perturbation is large, and
relevant regions of state “1” in phase space have little
population in state “0”. To find configurations that
contribute significantly to the exponential average (i.e.,
are “probable”), one has to run trajectories on the initial
state for a very long time. In such cases, second-order
perturbation theory (for technical reasons also called the
“cumulant” expansion) can give better results. To obtain
the perturbation expansion of the free energy, one ex-
pands the exponential in eq 5 in powers of V and then
takes the logarithm of this expansion. In this way, it is
easy to show that

AG=D — g(ufzg - OP) =+ ... (6)

With this background we are in a position to appreciate
what Jarzynski did. He showed that if the perturbation is
turned on during a finite time interval # [i.e., 1(0) = 0, A(?)
= 1], then the free energy difference between states “0”
and “1” is exactly given by

e MO = pr[—ﬂ j;’dflm VIx(7)] dt] D: o ()

T

The averages are taken over trajectories that start out from
the equilibrium distribution corresponding to H, and are
propagated according to the time-dependent Hamiltonian
H(t) = Hy + A()V. W, is the total work required to carry
out this transformation. This relationship can be viewed
as a simple result of the statistical mechanics of trajectory
space.?®

At first sight, Jarzynski’s identity appears to be truly
remarkable. It establishes an exact relation between
equilibrium free energy changes and the irreversible work
done to make these changes. The second law of thermo-
dynamics tells us only that (W;[0> AG (which incidentally
follows immediately from eq 7 using Jensen’s inequality,
[e0= e 1Y, so it is unexpected that an equality actually
exists. Moreover, in nonequilibrium statistical mechanics
for systems far from equilibrium exact results are few and
far between. However, in retrospect, the existence of such
an identity is, as often happens, not all that surprising. If
one can obtain the free energy difference by making the
transformation infinitely slowly (eq 4) and infinitely fast
(eq 5), why can’t it be done in intermediate cases? In
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addition, one must remember that Jarzynski’s identity tells
us nothing about the nature of nonequilibrium states. It
only allows someone who is too impatient to carry out
the transformation sufficiently slowly to obtain the equi-
librium free energy differences by repeatedly making the
transformation in a finite time. Can we prove Jarzynski’s
identity in a simple way as we did above for the limiting
cases? The answer is “yes”, but a little additional back-
ground is needed.

2.2. Fluctuating Rates, NMR Line Shapes, and Feyn-
man Path Integrals. One understands new things by
relating them to what one already knows or to what is
familiar. Specialists in kinetics, NMR spectroscopy, or
quantum mechanics may require explanations that sound
different but are fundamentally the same.

Let us begin by providing the necessary background
for a kineticist. Consider a first-order irreversible process
described by a time-dependent rate coefficient k(z). The
concentration of interest then satisfies

dc_
3= —koC (8)

The solution of this first-order rate equation is
C B t
Co

where C, is the initial concentration. Now suppose that
the reason we used a time-dependent rate coefficient in
the first place is that the rate coefficient fluctuates. As a
simple example, consider Forster resonance energy trans-
fer between two dyes attached to the ends of a polymer.
Because the rate of transfer depends on the end-to-end
distance and this distance fluctuates as the result of
conformational dynamics, the transfer rate fluctuates.
Suppose that at t = 0 we excite the donor in an equilib-
rium ensemble of polymers with a short light pulse. If we
ignore the intrinsic lifetime, the survival probability of
excited donors is then given by

s = £ =@ oug (10)
CO

where the angular brackets denote averaging over equi-
librium trajectories of the end-to-end distance generated
in the absence of energy transfer. This relation was, for
instance, used to compare the quenching kinetics ex-
pected from molecular dynamics simulations®® to that
observed experimentally.3

How can we calculate the average in eq 10 for some
model of the dynamics? Let us start with the simplest
model: the polymer has only two states that interconvert
according to the kinetic scheme 1 = 2. If k; and k; are
the transfer rates in these conformations, then

S = @ J,Kodr= C, (D + C,(0) (11)
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where Ci(f) and C,(?) satisfy the rate equation

d(G)_[-a Db\(GC) _ [k 0)[C (12)
dt C2 a _b C2 0 k2 CZ
subject to the initial conditions that at t = 0, C, and G,
are the equilibrium concentrations for the kinetic scheme

1242 fie, C=bi(a+ b), C = al(a + b)l. The first
term on the right-hand side of eq 12 describes the
dynamics of the two-state system, while the second takes
into account the irreversible decay. It is easy to generalize
this to many discrete states and even to states labeled by
the continuous multidimensional vector x. The generali-
zation of eq 11 is

@, Kod= JCxn dx (13)
where now C(x,1) satisfies the generalization of eq 12

C(x,1) _

" LCx1 — kX Cx,1) (14)

_/is the operator that describes the dynamics of the system
at temperature 7T in the absence of the “sink” term k(x)
and has the property

re=0 (15)

4

This is the analogue of

_ cea
e
2

and means that the Boltzmann distribution is stationary.
Equation 14 must be solved subject to the equilibrium
initial condition

efﬂH(x)

Cx,0) = ———
f e PHX) gy

17

In applications, it is almost never possible to solve eq 14
analytically.

Let us now turn to the problem of determining the
NMR line shape in the presence of chemical exchange.
When the resonance frequency depends on the confor-
mation, the line shape I(w) is given by

_L iwtr—m—i tw (n)dr
I(a))—znfe " f, 0%y (18)

If wo(f) = wy is independent of time, I(w) = 6(w — wy).
Again, the simplest case is when the molecule has only
two conformations with resonance frequencies w; and ws.
If the interconversion between the two conformations is

a
described by the kinetic scheme 1 = 2, then the line

shape function can be obtained from eq 11 by solving eq
12 with k; — iw; and k, — iw,. This is Kubo—Anderson
line shape theory.?* For more complicated dynamics, one
must solve eq 14 with k() — iw(x).



Free Energy Surfaces Hummer and Szabo

Finally, we mention the relationship to the Feynman
path integral formulation of quantum mechanics (e.g., see
ref 25). The time-dependent Schrédinger equation is

ap_ i o iV
o 2m” VT RY (19)
The propagator or Greens function G(x,f|xp,0) is the
solution of this equation with initial condition 3 (x,0) =
O0(x — Xp). In analogy with eqs 13 and 14, we can write

Gx,1/%,,0) = &~ fo Vix@)dr/h 20)

where the average is over paths of the free quantum
particle starting from x, at t = 0 and ending in x at time
t. In practice,® one normally works in imaginary time
where the free-particle paths correspond to trajectories
of a Brownian particle. The Feynman—Kac theorem states
that the path integral representation of the propagator in
eq 20 satisfies the Schrédinger equation, eq 19.

2.3. Proof of Jarzynski’s Identity. We now show that
Jarzynski’s identity?*?! relating free energy changes and
nonequilibrium work follows almost immediately from the
above results.? Rather than using a time-dependent
coupling parameter, we consider a time-dependent Hamil-
tonian H(x,?). This is the natural description of the entire
system in a pulling experiment where the spring moves
at, say, a constant velocity. We are interested in the free
energy difference between equilibrium systems corre-
sponding to Hamiltonians parametrized by times t = 0
and ¢

~BHx,D
o PAGH) _ QW _ fe dx

= [ Cx,0) dx
Q(0) f efﬂH(x', 0 dx’ f 1)
21
where we have defined
o PHXD
CxfH)=—"""—"— (22)
fe_ﬂH(x"O) dx

Note that C(x,0) is simply given by eq 17 with H(x)
H(x,0). We assume that the dynamics of the system is
described by a time-dependent operator /; that satisfies

L P = 20, =0 (23)

as is, for instance, the case for the Liouville operator of
classical mechanics or the Fokker—Planck operator for
diffusion in phase space (i.e., Langevin dynamics). From
eq 22 and the stationarity of the Boltzmann distribution,
eq 23, it follows immediately by differentiating eq 22 with
respect to time that

aC(x,1)
or

oH(x,1)
ot

= /Cx,1) —fp Cx,1) (24)
which has the same form as eq 14 when k(x) — f0H(x,t)/
dt. Therefore, by comparing eqs 13 and 21, one can see
that

t oH[x(7),7] d
o BAGD — B j; w 0= "o (25)

where the averages are taken over all trajectories starting
from an equilibrium initial distribution and evolving
according to the time-dependent equation of motion
corresponding to the operator /. This is Jarzynski’s
celebrated theorem?® relating the difference between the
free energies at two different times to the average of the
Boltzmann factor, e #™, of the external work done on the
system.

Because of the formal similarity of Jarzynski’s identity
with Zwanzig’s less general one in eq 5, many results
obtained in the context of free energy perturbation theory
can be immediately generalized. For example, in analogy
with eq 6, the cumulant expansion of the free energy is?*3!

AG(H) = W,0— g(twfm— WA + ... (26)

2.4. Reconstruction of Free Energy Surfaces. Finally,
we are in a position to consider the central problem of
this article, namely, how to extract the underlying free
energy surface from force-spectroscopy experiments using
laser tweezers, atomic force microscopes, or steered
molecular dynamics simulations.'~!® In both experiment
and simulations, a spring is attached to a molecular
system, and this spring is then moved. Both these situa-
tions are described by the time-dependent Hamiltonian
Hx,t) = Hy(x) + Vigx),f] where g(x) is the pulling
coordinate. If the pulling is done with a harmonic spring
moving at constant velocity v, then V(q,t) = k(g — v1)?/2.
We would like to extract the free energy of the system
along the pulling coordinate g in the absence of externally
applied forces. We define the free energy along g as

fé[q _ q(X)] e*ﬂHo(X) dx

e PG@+06) — 51
f e*ﬂHo(X) dx

q—qx)g=
27

where O0G is an arbitrary constant. Since Jarzynski’s
identity relates free energy changes to a certain average
of the external work done, it is clear that it has something
to do with this problem. In fact, in the introduction of a
paper addressing this problem in the context of steered
molecular dynamics,® Schulten and co-workers used
the Jarzynski identity to show that reconstruction of the
free energy surface must be possible in principle, but
then proposed several model-dependent procedures
based on solving the Smoluchowski equation for diffusion
in the presence of a potential. The difficulty in recon-
structing free energy surfaces is that Jarzynski’s identity
is not!532

o PG@) — pAW@

This is because Jarzynski’s identity, eq 7, deals with free
energy differences between states described by different
values of the coupling parameters 4 (here, times ), not
different molecular positions. In a pulling experiment, only
the anchor z(#) of the pulling spring is a controllable
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coupling parameter (Figure 1). The point of attachment
to the molecular system (i.e., the “tip” of the spring), g,
can take on a variety of positions at a given time ¢. The
free energy along that fluctuating position g is thus a
potential of mean force.

After we found the simple derivation of Jarzynski’s
identity presented above,? it became clear that what is
needed is C(x,f) in eq 22. So, when H(x,f) = Hyx) +
Vlg(x),#], one has

e—ﬂ{Ho(X)‘*'V[q(X]J]}

f e*ﬁ{Ho(X’HV[q(X’),O]} dx’
B[x X0 exp[ 4 ftaV[x(r) 7] ]D

=[x — x(8] e "0 (28)

This is the key result upon which our procedure is built.
Operationally, this amounts to simply sticking Dirac ¢
functions into eqs 21 and 25 in the right places. Integrating
eq 28 over x gives the Jarzynski identity in eq 25.

In retrospect, this result is implicit in the work of
Jarzynski???! and Crooks.* In a deep and insightful paper
analyzing all aspects of the relationship between free
energies and irreversible work, Crooks presented the
following identity in an unnumbered equation:3?

Hlxm)] e "0, = fx@ID, (29)
which he attributed to Jarzynski. This identity relates a
nonequilibrium path average of an arbitrary function f{x)
(on the left-hand side) to an equilibrium average over the
ensemble corresponding to the Hamiltonian at time 7 (on
the right-hand side). Wy is the dissipated work, Wy = W,
— AG(7). If one chooses fIx(7)] = 6[x — x(7)] and uses eq
21 for AG(7), one gets eq 28.

To relate the general relation, eq 28, to single-molecule
pulling, let us consider the special case that the perturba-
tion depends only on the pulling coordinate g and time
t, that is, V(x,) = V[g(x),t]. Multiplying both sides of eq
28 by ef"@bd[g — q(x)], integrating with respect to x, and
using the definition in eq 27, we have?®

_ 9 ,
o BG@ — E[q — g &W)] exp[—ﬂ( 0[ V{q[;(t(r)] Tt

V{c/[x(t)],t})] D (30)

where [1.Clis an average over all trajectories starting from
a Boltzmann distribution for the Hamiltonian H(x,0) =
Hy(x) + VIg(x),0] and evolving according to the time-
dependent ;. The constant 0G in the definition eq 27 is
the free energy difference between the entire system at
oG and the molecular system, e 790 = [e AHXTVIG.0} dx/
Je P dx. Because OG is independent of time, eq 30
allows us to find the free energy along the pulling
coordinate from trajectories of position versus time.
More commonly, force-versus-position curves are re-
ported from pulling experiments. Integrating the identity
= (3V/aq) dg + (8V/dr) dt from [t = 0, g = g(0)] to [t =
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t, g = q(t)] and noting that the restoring force is F(q,t) =
—aV/dq, we have

5
w,= [0 Vig@y7l 4 = [ Fdq+ Vig®,1 -

= Vig(0),0]

B

where the integral®* over ¢ is along the position-versus-
time contour connecting q(0) and g(#). Using this in eq
30, we have?®

e*ﬁGo(q) — B[q _ q(X(t))] e*ﬁ(fCqu*V[q(O],O])D (32)
This and eq 30 are our central results. When the work is
calculated as a time integral, as in eq 30, to get the free
energy along the pulling coordinate, one must subtract
the energy stored in the pulling apparatus at time t.
Alternatively, when the work is obtained as a force-
extension contour integral, as in eq 32, it is the initial
energy, V[g(0),0], that must be subtracted. Schurr and
Fujimoto,®® in rederiving some of these relations, called
W; the “accumulated work,” as distinguished from the
“transferred work” f¢ F dq.

3. Practical Implementation

Based on the rigorous relations eqs 30 and 32, we can now
develop practical approaches to estimate the free energy
surface Gy(q) from repeated pulling experiments. But
before proceeding to the actual analysis, we briefly discuss
how the pulling measurements (or steered molecular
dynamics simulations) should be performed to conform
with eqs 30 and 32. We then describe a histogram-based
and a moment-based approach to analyze the results.
3.1. Initialization, Execution, and Noise Corrections.
For eqs 30 and 32 to be valid, the trajectories used to
obtain the averages must be generated in a specific way.
For simplicity, we discuss the requirements for a harmonic
pulling spring moving at a velocity v so that V(q,t) = kilg
— z(01?/2 where z(f) = z(0) + vt for ¢ = 0 is the position of
the anchor of the pulling spring and g(x) is the point of
attachment of the molecular system and the pulling spring
projected onto the pulling direction (see Figure 1).
Equations 30 and 32 require that the initial conditions
of pulling trajectories [x(#=0)] are chosen from an equi-
librium distribution corresponding to the Hamiltonian
H(x,0) = Hy(x) + klg(x) — z(0)]2/2. In an experiment, the
pulling apparatus should thus be equilibrated at a fixed
position z(0) in all trajectories. Furthermore, the control
parameter must have the same time dependence, z(f), in
each trajectory. One of the resulting difficulties in an
experiment (but not in a computer simulation) is that one
has to know the absolute pulling apparatus position z(f)
in a given trajectory. Instrument noise will likely broaden
the observed work distributions, thereby lowering the
estimated free energy differences. By performing analo-
gous experiments without a load (i.e., pulling at velocity
v but without an attached molecule), one can correct for
this effect. Without load, the free energy profile should
be flat. To correct for instrument noise, the Gyn(q)
estimated from the no-load experiments should be sub-
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tracted from the Gy(g) obtained from experiments with
attached molecules.

3.2. Analysis Using Weighted Histograms. If one has
a sufficient number of properly sampled pulling traces,
the path averages in eqs 30 and 32 can be evaluated with
a histogram technique. In principle (i.e., for an infinite
number of pulling traces), the entire free energy surface
Gy(g) could be reconstructed from observations at a single
time ¢ > 0. In practice, at any time ¢ the trajectories will
likely be clustered near the location of the pulling spring.
Consequently, from observations collected at time t, one
can find reliable estimates of Gy(g) only near q ~ z(1).

However, we can combine multiple histograms ob-
tained for different times ¢ to improve our estimate of
Go(q). This is analogous to the weighted histogram ap-
proach of Ferrenberg and Swendsen.*® Here, we have to
unbias the observations not only with respect to the
potential of the pulling spring, V(qg,#), as in usual umbrella
sampling, but also with respect to the nonequilibrium
work, W;. This leads to the following expression for the
free energy profile:?

blg — g()] exp(—pW)UO

oG — 27 exp(pWyC 3
z exp(—4V(g,1)

exp(—pW)0O

where the sums are over the histograms collected at
different times t. In this expression, we have used the
Jarzynski identity, e #A6W = [@ W] A self-consistent
formula that does not use this AG(f) has also been
developed.?® Implementation of eq 33 is discussed in ref
26 (but note that in eq 10 of this paper, u; should be u;).

3.3. Analysis Using Moments. In many practical situ-
ations, one may not have enough trajectories to use a
histogram analysis. One can then use a simple moment-
based approach. If the pulling spring is relatively stiff, then
most trajectories will be clustered near g[x(f)] ~ z(f) at
any given time t. Given the mean

1 e "o
e "0
and variance
2 —BW,
He o
tz = L -4 ’ (35)

r3n

one can approximate the (weighted!) distribution of
positions by a Gaussian,

e—,b’[Go(q)+V[q,t)] —

—pW,
—(q—ﬁt)Z/(ZO[Z) @ t|:|

Blg — q] e ™M e
q q (Zno_tZ)I/Z

(36)

We note that near a sharp, cusp-like feature in Gy(q)
corresponding to a transition point, the distribution of g’s
may be multimodal,'* so the Gaussian approximation in

eq 36 may be poor. Using the Gaussian distribution, eq
36, results in the following approximation

q—a,)* . ™o
G\(q) ~ knyT—— — V(qg,t) — In———
olq B 252 q p (ZJTUtZ)llz

t

(87

where the logarithmic constant in the last term “matches”
the locally quadratic expansions of the free energy surface
Go(q) obtained at different times t. Equation 37 is a
convenient starting point for an expansion in cumulants
of the work W,. Here, we simply take the derivative with
respect to g and obtain

_Vign
aq
The right-hand side is the restoring force measured by
the pulling apparatus at the weighted average position,

g, at time ¢. If the variance at o/ can be estimated reliably,
one can also estimate the second derivative

Gy(@;) ~

=g = F @0 (38)

ky T
Gy@) ~ F@;,0 + —5 (39)

t

To implement the moment-based formula eq 38, one
needs to average the position g according to eq 34, where
each observation is weighted with the Boltzmann factor
of the accumulated work, W; given in eq 31. For a
harmonic pulling apparatus, V(g,f) = kslg — z(1)]?/2, we
have F(f) = ks[z(f) — g] such that

Gylz(n) — F/k) ~ F,= F(H) e "™ e "0 40
Within the Gaussian approximation, the restoring force
averaged with the Boltzmann-weighted work thus gives
the first derivative of the potential of mean force, Gy(q),
that is, the mean force.

3.4. Error and Efficiency: Many Fast versus Few Slow
Experiments? Given a certain amount of measurement
time, is it better to run many fast and short pulling
experiments or few slow and long ones? In a simple error
analysis, one can assume that the amount of dissipated
work, Wy — AG(#), grows linearly with time, as one would
expect from linear response theory.3” As was shown in ref
31, for sufficiently slow pulling the most accurate estimate
of the free energy difference is then obtained by a single
slow experiment. However, the expected error of the
estimate increases very little if instead of the single long
experiment of time 7, N short ones of time t/N are
performed, as long as the standard deviation of the
accumulated work is around kgT. Because multiple mea-
surements allow us to put error bars on the calculated
result, the “optimum” allocation is to run as many such
runs as possible.

4. Analysis of an Experiment: Forced
Unfolding of RNA

In a landmark paper, Liphardt et al.’® used a simplified
version of our formalism to obtain free energy profiles for
RNA unfolding from force-versus-extension curves. Their
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FIGURE 2. Analysis of RNA unfolding experiment of Liphardt et al.’
Panel a gives a schematic representation of the setup. Phabc RNA
is attached to two beads through long RNA/DNA hybrid linkers. The
beads are pulled apart using a laser optical tweezer. An arrow
indicates the position up to which we conclude that the RNA unfolds
in the first unfolding transition at forces around 9.5 pN, the remaining
structure unfolding at a higher force of ~12 pN (not shown). Panel
b shows pulling traces from simulations, smoothed by convolution
with a triangular window function, similar to those seen in the
experiments near the first unfolding transition (Figure 1B of ref 15).
Panel ¢ gives the potential of mean force, Go(g) (thick solid red and
blue lines), comprised of a folded branch (red) and unfolded branch
(blue). The arrow indicates the free energy, AG,, of the RNA
unfolding transition. The inset shows the combined potential, Gy(q)
+ Wgq,t), at a time t where it is bistable. Panel d presents
reconstructions of Gy(g), which for our one-dimensional model is
identical to Gy(g) (black line). The blue solid and red open spheres
are reconstructions using the weighted histogram formula, eq 33,
for 250 trajectories, each at force loading rates of 3.6 and 53 pN/s,
respectively, starting from an equilibrium distribution around g = 0.
The open green squares use the approximate force-extension
integral, eq 45, for the same trajectories but starting the integration
at an extension of gsat = 10 nm. The inset shows the difference of
the reconstructed potential. The arrow indicates the bias in the
estimator of —In [8#™[at §; expected for a Gaussian of the same
variance in SW; The bias was estimated by repeatedly drawing
samples of 250 Gaussian random numbers, calculating the logarithm
of the average of the exponential of these numbers, and comparing
the average of that to the exact result given by eq 26.

experiment is illustrated schematically in Figure 2a. The
ends of a folded RNA are attached to two beads by long
flexible linkers. The beads are moved apart by an optical
tweezer, thus unfolding the RNA. Typical force versus
extension curves are shown schematically in Figure 2b for
different force loading rates. There are two regimes in
which the force depends almost linearly on distance (with
almost the same slope). These regimes are connected by
random, sudden jumps in the distance that occur when
the applied force becomes sufficiently large (about 9—12
pN).

To fully understand the analysis in ref 15 and to test
the validity of the approximations, we started by generat-
ing “data” from simulations of a simple model that
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captured what seemed to us to be the essential physics
of the problem. Then we analyzed the simulated data
using various versions of our formalism to see how well
they worked. The measurable potential of mean force,
Go(g), will be a convolution of contributions, Giinker(q), from
the molecular linkers (curved black lines in Figure 1) and
the molecule of interest, G0 (q) (protein in Figure 1):

efﬂGD(q) = fefﬁcmol(q') efﬂGlinker(qfq') dq' (41)

By reconstructing the free energy surface twice, once using
measurements on the linker, without RNA, and a second
time for the combined system, one could, in principle,
obtain Gni(q) after deconvolution. Here, we can greatly
simplify this analysis if we assume that the RNA unfolding
is instantaneous on the time scale of the pulling experi-
ment"” and it simply leads to an increase of Aqg in the RNA
end-to-end distance. Then, the integral in eq 41 separates
into a sum of two terms, and the potential of mean force
along ¢ of the combined system is given by e #%@ = e /6@
+ e#6@ where G and G, are the free energies of the
entire system with folded and unfolded RNAs, respectively.
Near the relevant region of the unfolding transition, the
measured force-extension curves are essentially linear, due
to effectively “harmonic” linkers. Thus, the free energies
of the folded (Gy) and unfolded (G,) states of the system
are

k,
Gl =3¢ @

— kO 2
G,(q) = E(q —Aq)” + AG, (43)

where kj is the effective force constant of the linkers, Ag
is the apparent increase in length due to RNA unfolding,
and AG, > 0 is the unfolding free energy. For this model,
the unfolding free energy AG, can be obtained by mea-
suring the average force F, = G;(g*) on a reversible (slow)
path at the midpoint of the transition where Gi(g*) =
Gu(g™ using

AG, = F,Aq (44)

At finite pulling speed, in analogy to egs 6 and 26, one

can approximate AG, as F,Aq — B(F,” — EA)AqG*/2.

The total free energy is G(g,f) = Go(q) + ks(g — v§)?/2
where the spring constant of the pulling apparatus is taken
to be ks = 0.1 pN/nm, which is in the range of values
reported for an earlier experiment.'* The parameters ky
= 0.22 pN/nm and Ag = 15 nm were chosen by eye to
reproduce the slopes and the distance between the linear
regimes of the experimental force extension curves (Figure
2b of ref 15). The unfolding free energy AG, was chosen
so that at the transition, the mean force would agree with
experiments at corresponding pulling speeds.

The resulting potential of mean force Gy(g) is shown
in Figure 2c. The folded potential (red) is a parabola
centered at ¢ = 0. The unfolded potential (blue) is a
parabola centered at Aqg = 15 nm. The two curves cross
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at g* = 50 nm, which corresponds to an unfolding free
energy of AG, = 34kgT. This apparent potential of mean
force Go(g) is not bistable, and the RNA unfolding merely
leads to a small change in slope at g* = 50 nm. This is
because the potential of mean force is dominated by the
behavior of the linker molecules. However, the combined
potential of mean force that includes the pulling spring,
Vl(g,1), can be bistable at a certain position of the pulling
apparatus, as shown in the inset of Figure 2c. This explains
why, even though the intrinsic potential of mean force is
nearly featureless, reversible jumps between two states can
be seen in quasi-equilibrium experiments where RNA is
held close to the point of rupture.'

On the above free energy surface, we performed
Brownian dynamics simulations at force loading rates kv
= 3.6, 36, and 53 pN/s. The diffusion constant D = 1200
nm?/s in the Brownian dynamics simulations was chosen
such that the mean rupture force would agree with the
measurements at different force loading rates. The result-
ing pulling traces shown in Figure 2b are very similar to
the experimental ones.!> We analyzed these simulated
curves using our formally exact reconstruction formulas
given in eqs 30 and 32. In addition, we used an expression
involving integration of the force over distance, omitting
the bias V(g,0). This approximation was suggested by us
in our original paper?® and was adopted by Liphardt et
al.!® for the analysis of their data. Such an approximation
is reasonable when the path integral eq 32 can be
factorized,

e 10~ Texp(—f (f("F dg — V1q(0),0)]0x
@Xp[_ﬁ '[;s]mnF dq] . (45)

so that the first term is a constant. In this somewhat casual
notation, the force-extension integral is taken over all
trajectories crossing the boundaries gy and g for the first
time. It can be seen from Figure 2d that eq 45 is an
excellent approximation for the present system when ¢start
is in the linear pretransition regime. Results from eq 45
are comparable in accuracy to those obtained from the
histogram expression eq 33. A free energy reconstruction
based on the average force, eq 40, also performs with
comparable accuracy (not shown) even though the dis-
tributions of g are not always Gaussian. At the highest
pulling speed and at the end of the pulling interval (~80
nm), the reconstructed free energy exceeds the actual one
by about 3kg7, or about 2%. This small difference can be
explained quantitatively by the expected bias of the
estimator. Thus, essentially the same free energy surface
is obtained for all pulling speeds, and the approximate
expression eq 45 appears to give accurate results for our
model system of the RNA unfolding experiment.

In addition to showing that the same free energy profile
can be extracted from experiments performed at different
pulling speeds, Liphardt et al.!> estimated a free energy
difference between the folded and unfolded states of the
entire system. Specifically, they found the free energy

difference between two points on the surface that bracket
the transition region. Their distance of 30 nm was chosen
to correspond to the estimated increase in the end-to-
end distance of the RNA upon fully unfolding. In this way,
they obtained a free energy difference of 60ks7." If in
Figure 2, panels c or d, we choose the interval 25 < g <
55 nm, we also find that the free energy difference is
60ksT. Moreover, integrated over this interval, the mean
and variance of the work at the various pulling speeds are
close to the experimental values (Supporting Information).
However, in our model the free energy difference between
g =55 nm and 25 nm has a significant contribution from
the linkers, 60ksT — AG, ~ 26kgT ~ '/,ks((55 nm —Ag)? —
(25 nm)?).

Why is our estimate of the RNA unfolding free energy,
AG, = 34kgT, lower than the equilibrium experimental
value of 60kT?'* We think that this is because under the
conditions of the experiment, the RNA chosen for the
experiments unfolds in two steps. Evidence for a two-step
transition was reported in an earlier paper by Liphardt et
al.1* It is only the first step that is modeled here, and this
step may correspond to unfolding of RNA up to the arrow
in Figure 2a. There is a hint in the experimental data
(Figure 2B of ref 15) that a second transition does indeed
occur at a higher force of about 12 pN with a jump width
of about Ag' = 8—10 nm. This is about the right length to
account for unfolding of the remaining RNA secondary
structure, and combined with the first transition, the free
energy of unfolding on the “reversible” path is in the
expected range, 12 pN x 9 nm + AG, ~ 60k, which
agrees with the value reported near equilibrium.!*

5. Concluding Remarks

So far, we have discussed how equilibrium properties can
be obtained from nonequilibrium single-molecule force
spectroscopy. Can one also find kinetic rate coefficients?
For forced unfolding or dissociation, we could start by first
extracting the potential of mean force, Gy(g), underlying
the molecular rupture event. This may require a decon-
volution step to remove the contribution of a molecular
linker. In addition, we would also need to approximate
the dynamics on this surface, for instance by diffusion,
and then estimate a position-dependent diffusion coef-
ficient, D(q). Given Gy(q) and D(g), the Smoluchowski
equation could be solved to estimate the intrinsic rate of
molecular dissociation or unfolding. Considering the
challenges already encountered in obtaining an accurate
molecular free energy surface, this approach seems pre-
mature.

A simple and widely used phenomenological theory
seems to provide a much easier route to rate coefficients.
According to Bell,*® a constant external force F should
accelerate rupture as k(F) = k, e"*'F where k; is the intrinsic
rate of rupture, and x* is the location of the transition state
relative to the free energy minimum. This simple relation
can be generalized to explicitly time-dependent forces
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(e.g., see refs 7 and 39—41), resulting in a time-dependent
rate coefficient of rupture,

k(t) = ky e (46)

This time-dependent rate, combined with eq 10 for the
survival probability, gives us the fraction S(#) of molecules
that have not ruptured up to time ¢.?” The distribution of
rupture forces can then be found using p(F) dF = —aS(#)/
at dt. However, when tested against even the simplest
model of rupture, Brownian dynamics in a harmonic well
with a cusplike barrier, this phenomenological theory
performs poorly, leading to intrinsic rate coefficients ko
that can be off by orders of magnitude.?”

As a simple alternative, we developed a model-depend-
ent formalism to estimate rate coefficients from single-
molecule pulling.?” An analytic solution for Brownian
dynamics in a harmonic well with a cusplike barrier is
fitted globally to the experimental data measured over a
broad range of force loading rates. In this approach, we
also use the survival probability of eq 10 but with a time-
dependent rate coefficient calculated using Kramers theory,

¥
X'F(t RO [1—
k() ~ k|1 - , (3 PHFOI—XF(0)/ (4AGH) 47)

k(r) is given here only for the limit of a stiff molecular
coordinate and a soft pulling spring with a force constant
ks that includes softening linker contributions,?” so F(f) =
ksvt is the average force at time . AG' is the free energy
barrier to rupture, which is not considered in the phe-
nomenological model. In the limit of a high barrier, AG*
— oo, our theory approaches the phenomenological limit,
eq 46. In ref 27, we tested this formalism against computer
simulations and showed that it works well even for
multimodule constructs, such as titin, that are connected
by anharmonic linkers. We also applied the formalism to
the unfolding of the 127 titin module!! to compare rate
coefficients from force-induced and chemical denatur-
ation, and the extracted free energy barrier AG" with an
estimate from recent measurements using single-molecule
fluorescence spectroscopy.

Single-molecule force spectroscopy is still a relatively
new technique, but its utility has already been demon-
strated in both experiments'~!®> and simulations.>619 Its
major strength, the ability to induce and monitor me-
chanical transitions in single molecules, is also a source
of difficulties because these transitions occur under non-
equilibrium conditions and are coupled to a pulling
apparatus. As we showed in this and an earlier paper,?®
an extension of Jarzynski’s identity?*?! nevertheless makes
it possible to extract thermodynamic information rigor-
ously from repeated nonequilibrium pulling experiments.
Even though the accuracy required for such measure-
ments may seem daunting—the dissipated work should
not exceed a few kgT—the first such measurement has
already been performed by Liphardt et al.!> As the resolu-
tion and accuracy of force spectroscopy further improves,
we hope that the theories discussed in this paper?®?” will
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enable routine measurements of thermodynamic and
kinetic properties of single molecules.

Supporting Information Available: Free energy of stretching RNA
from qo = 25 nm to qo + Jq. This material is available free of
charge via the Internet at http://pubs.acs.org.
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